题目
请你设计一个数据结构,支持 添加新单词 和 查找字符串是否与任何先前添加的字符串匹配 。
实现词典类 WordDictionary :
- WordDictionary() 初始化词典对象
- void addWord(word) 将 word 添加到数据结构中,之后可以对它进行匹配
- bool search(word) 如果数据结构中存在字符串与 word 匹配,则返回 true ;否则,返回 false 。word 中可能包含一些 ‘.’ ,每个 . 都可以表示任何一个字母。
示例
示例一:
输入:
[“WordDictionary”,”addWord”,”addWord”,”addWord”,”search”,”search”,”search”,”search”]
[[],[“bad”],[“dad”],[“mad”],[“pad”],[“bad”],[“.ad”],[“b..”]]
输出:
[null,null,null,null,false,true,true,true]
解释:
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord(“bad”);
wordDictionary.addWord(“dad”);
wordDictionary.addWord(“mad”);
wordDictionary.search(“pad”); // return False
wordDictionary.search(“bad”); // return True
wordDictionary.search(“.ad”); // return True
wordDictionary.search(“b..”); // return True
提示
- 1 <= word.length <= 500
- addWord 中的 word 由小写英文字母组成
- search 中的 word 由 ‘.’ 或小写英文字母组成
- 最多调用 50000 次 addWord 和 search
解题
本题要进行插入和搜索,可以使用前缀树来实现,前缀树类实现如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| class Trie{ private Trie[] children; private boolean isEnd; public Trie(){ children = new Trie[26]; isEnd = false; } public void insert(String word){ Trie node = this; for (int i=0; i<word.length();i++){ char ch = word.charAt(i); int index = ch - 'a'; if (node.children[index]==null){ node.children[index] = new Trie(); } node = node.children[index]; } node.isEnd = true; }
public Trie[] getChildren(){ return children; }
public boolean isEnd(){ return isEnd; } }
|
深度优先遍历字符
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| private boolean dfs(String word, int index, Trie node){ if (index==word.length()){ return node.isEnd(); } char ch = word.charAt(index); if (Character.isLetter(ch)){ int childIndex = ch - 'a'; Trie child = node.getChildren()[childIndex]; if (child!=null && dfs(word,index+1,child)){ return true; } }else { for (int i = 0; i < 26; i++) { Trie child = node.getChildren()[i]; if (child!=null&&dfs(word,index+1,child)){ return true; } } } return false; }
|
组合起来:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
| class WordDictionary { private Trie root; public WordDictionary() { root = new Trie(); } public void addWord(String word) { root.insert(word); } public boolean search(String word) { return dfs(word, 0, root); }
private boolean dfs(String word, int index, Trie node){ if (index==word.length()){ return node.isEnd(); } char ch = word.charAt(index); if (Character.isLetter(ch)){ int childIndex = ch - 'a'; Trie child = node.getChildren()[childIndex]; if (child!=null && dfs(word,index+1,child)){ return true; } }else { for (int i = 0; i < 26; i++) { Trie child = node.getChildren()[i]; if (child!=null&&dfs(word,index+1,child)){ return true; } } } return false; } } class Trie{ private Trie[] children; private boolean isEnd; public Trie(){ children = new Trie[26]; isEnd = false; } public void insert(String word){ Trie node = this; for (int i=0; i<word.length();i++){ char ch = word.charAt(i); int index = ch - ''; if (node.children[index]==null){ node.children[index] = new Trie(); } node = node.children[index]; } node.isEnd = true; }
public Trie[] getChildren(){ return children; }
public boolean isEnd(){ return isEnd; } }
|